all his figures, in which case the filaments of T. pectinata would be almost equal in diameter to those of T. porticalis, and consequently nearly as large again as those of the present species.

- Tyndaridea immersa. Filaments rather smaller than those of the preceding species; cells usually twice or twice and a half as long as broad; sporangia usually spherical, but sometimes oval and entirely confined to the transverse tubes. Fig. 18. Hab. Wimbledon Common.
- Tyndaridea decussata. Filaments of less diameter than those of the preceding species; cells usually two and a half times as long as broad; sporangia circular, and a portion of them immersed either in one or other or both cells. See fig. 19. Hab. Wimbledon Common.

This species may possibly be the *T. decussata* of Vaucher, in which however the cells are said to be four times as long as broad.

Tyndaridea Ralfsii. Filaments of less size than those of T. immersa; cells usually four times as long as broad; sporangia elliptical, their long diameter corresponding with the length of the cell. Fig. 20.

Hab. Penzance, Mr. Ralfs; near Cross-in-Hand and Chiltington Common, Mr. Jenner.

There is not a more elegant or beautiful species than this in the genus, and I have much satisfaction in dedicating it to Mr. Ralfs, its first founder, and a gentleman by whom our knowledge of the Algæ has been so considerably augmented.

XXVI.—Note in reply to Mr. Hassall. By Prof. Edward Forbes, V.P.W.S., F.L.S., F.B.S. &c.

I REGRET that Mr. Hassall has taken in such apparent ill-humour my comments on two of his supposed discoveries. His observations, however, more and more convince me that he is mistaken in regard to the *Echinocorium*, and had not made himself acquainted with previous observations when he claimed the priority of discovery about the phosphorescence of zoophytes.

A word or two regarding each: $\hat{1}$ have met with the Coryne on shells not incrusted by Alcyonidium echinatum as well as those so invested: Mr. Hassall has not hitherto. This is just the state of the case about the association of Adamsia maculata with the Pagurus, and of the Adamsia with the remains of Echinocorium, but one negative observation (I have made many) upsets all his positions.

Mr. Hassall says, that he has convinced himself of the union between the *Alcyonidium* and *Coryne*; first, because marked depressions exist on the polypidom for the reception of the bases of

188

the polypes; 2nd, because the whole structure of the polypidom itself was porous and incrusted with a gelatinous material; and lastly, because it was invested by a membrane derived from the polypes themselves, and which likewise covered the muricated processes. If these were the grounds of his conviction he must be very easily convinced, since, admitting the correctness of the observations (which I am by no means inclined to do), they are all so many arguments against the genus Echinocorium, since they are quite contrary to the type of structure in the Zoophyta Hydroida, to which order the animal of his genus undoubtedly belongs. His logic too is singularly bad, for by his first argument he might prove the oyster-shell to be the polypidom of Cliona; and by the second, that a fucus had the same relation with a Botryllus. When I said that the Coryne could be separated from the Alcyonidium without injury, of course I meant without organic lesion; no other meaning would have been scientific. As to the separation of the Alcyonidium echinatum as a genus (it is a somewhat unphilosophic consolation, that though we are not right one way, we may be in another), I agree with Mr. Hassall that it probably should be, but we want more data ere we can constitute it satisfactorily. As to the Coryne being distinct, I also think it is, and three years ago showed a drawing of it to Dr. Johnston under that conviction. He was familiar with the form, but regarded it as a variety of C. squamosa. In order that there be no mistake in future about it, the best way is to constitute it a species at once, and name it after the industrious naturalist who has brought it so prominently forward.

Coryne Hassalli, nov. sp. C. corpore elongato, capite clavato, tentaculis brevibus albidis. L. 1-2 lin.

In mare Britannico profundiore.

Obs. Secundum Hassall, animal Echinocorii, genus Zoophytarum improbabile.

Now, as to the Phosphorescence of Zoophytes, I again repeat, that the general fact has long been known. It has been taught for years in the class-room of every natural-history and physiological professor at home and abroad. I taught it myself in my lectures in Edinburgh in 1838 as a familiar fact, not as a novelty. The masters under whom I had studied had taught me, and I had confirmed their observations on the sea-shore. Dr. Johnston's insertion of Stewart's paragraph is a sufficient indication of his recognition of the fact. Dr. Grant notices it in his published lectures. What can be more to the purpose than Dr. Carpenter's summary—"Sponges, Sertulariæ, Pennatulæ, and other Polypifera, exhibit some degree of luminosity" (Principles of Gen. Physiology, 1839)? If Mr. Hassall be, as he says himself, "not suffi-

190 Information respecting Scientific Travellers.

ciently acquainted with foreign authors," he ought at least to be so with British ones, ere he sets up a claim for such familiar discoveries as the phosphorescence of zoophytes. The 'Dictionnaire des Sciences Naturelles' refers to British authors, and rather old ones too (as Shaw), on the very subject in dispute.

But I have another "Retrospective Comment" for Mr. Hassall, on a passage in his paper on Diseases produced by Fungi, in the last Number of the 'Annals.' He there writes-"The production of diseases through the agency of Fungi, whether in the animal or vegetable fabric, has not hitherto received that degree of consideration to which the frequency of their occurrence and the importance of the subject so eminently entitle them;" and again, "it has hitherto been supposed that their powers were confined to dead organic matter." Who would suppose from this, that only a year ago an elaborate memoir " On the Parasitic Vegetable Structures found growing in Living Animals" had been published in the Transactions of one of the Royal Societies of Great Britain (see Edin. Royal Soc. Transact., vol. xv. part 2. for a paper eighteen pages long, with two plates, by my friend Dr. J. H. Bennett)? Yet such was the case, and nearly fifty authors on the subject in question are referred to in that paper.

August 1843.

XXVII.—Information respecting Scientific Travellers.

[A NEWLY published Part of the 'Journal of the Royal Geographical Society' contains two narratives of an expedition to the Barima and Guiania Rivers, communicated by our esteemed correspondent the Chevalier Schomburgk* to the Colonial Office, from which we shall give some extracts relating to natural history.—ED.]

> River Manari (a tributary of the Barima), June 22, 1841.

The expedition under my direction left Georgetown on the afternoon of the 19th of April, in the schooner Home, which had been chartered for the purpose of conveying us to the Waini, or Guiania.

On the 28th of April we received the visit of a Warran chieftain from the Canyaballi, a tributary of the Waini, and about two days' journey from its mouth, who, having heard of our arrival, came with part of his men to visit us. The captain is known among the colonists of this part under the name of Sam Peter, and appeared a very intelligent old man. During the time occupied by the survey the weather had changed, and it now became apparent that the short rainy season had set in. We ascended the Waini to the remarkable passage which connects that river with the Barima; and which, although not navigable for sailing vessels, affords a ready communication, in boats and canoes, between the two rivers. This natural

* See also the notice in vol. x. p. 348.